Тема 1

Системы счисления

Теория

Для начала надо вспомнить, что же такое системы счисления.

Система счисления (СС) — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

- непозиционными (в этих системах значение цифры не зависит от ее позиции положения в записи числа);
- позиционными (значение цифры зависит от позиции).

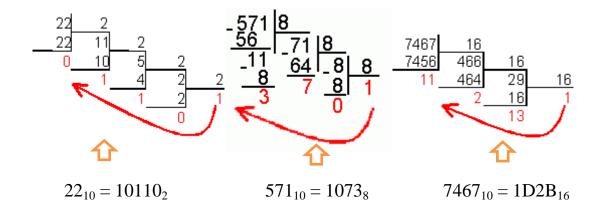
Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления — количество различных цифр, используемых в этой системе. Вес разряда — отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде.

Всего в нашей, десятичной, системе счисления десять цифр, от 0 и до 9. Эти цифры образуют числа, то есть 1337, 228 и т. д. Рассмотрим число 12345 по разрядам:


- 5 это разряд единиц.
- 4 это разряд десяток, это 4 раза по десять единиц, как только мы набираем в единицах 10, мы прибавляем к десяткам 1.
- 3 разряд сотых, это десять десятков или же сто единиц и т. д. В общем, от того какую систему счисления мы используем, зависит то, сколько нам надо набрать единиц/десяток/сотен, чтобы перейти в следующий разряд. В нашей, десятичной, системе счисления, надо набирать по десять. В двоичной системе по два, в восьмеричной по восемь, в шестнадцатеричной по шестнадцать. Остановимся отдельно на шестнадцатеричной счисления: в нашей системе всего десять цифр, а в шестнадцатеричной их 16. Что же делать? Недостающий цифры заменяются буквами английского алфавита. Посмотрите на первую таблицу (табл. 1), в ней приведены примеры счета в четырех системах счисления. В первой строке обозначается основание системы счисления, основание – это как раз количество цифр в этой системе.

Системы счисления							
Десятичная	Двоичная	Восьмеричная	Шестнадцатеричная				
q = 10: цифры	q = 2:	q = 8:	q = 16: цифры				
0,1,2,, 9	цифры 0,1	цифры 0,1,2,, 6,7	0,1,,9,A,B,C,D,E,F				
0	0	0	0				
1	1	1	1				
2	10	2	2				
3	11	3	3				
4	100	4	4				
5	101	5	5				
6	110	6	6				
7	111	7	7				
8	1000	10	8				
9	1001	11	9				
10	1010	12	A				
11	1011	13	В				
12	1100	14	С				
13	1101	15	D				
14	1110	16	E				
15	1111	17	F				
16	10000	20	10				
17	10001	21	11				

Существует несколько вариаций первого задания, которые будут присутствовать в ЕГЭ, одни более простые, другие сложнее, но во всех требуется знание систем счисления, умение перевода из одной системы счисления в другую. Повторим способы перевода из одной системы счисления в другую. Начнем с того, что существует всего две основные операции по переводу, это перевод из любой системы счисления в десятичную, и наоборот, перевод из десятичной в любую другую.

Перевод из десятичной в другую систему счисления

Для того, чтобы перевести из десятичной системы в любую другую, надо десятичное число разделить на основание системы, в которую мы хотим перевести, при этом надо делить "с остатком", а затем частное от деления снова разделить на основание и так далее, пока частное не будет меньше основания системы, в которую мы хотим перевести. В конце надо записать остатки в обратном порядке, то есть снизу вверх. Посмотрите ниже примеры перевода чисел из десятичной системы в другие системы счисления:

Перевод в десятичную систему счисления из других

Для того, чтобы перевести число в десятичную систему счисления из любой другой надо вначале пронумеровать каждый разряд числа справа налево, нумеровать надо начиная с нуля, то есть разряд единиц пронумеруем нулем, десяток единицей и так далее. Затем надо умножить каждый разряд на основание той системы, из которой мы переводим, при этом основание надо возводить в степень, равную номеру разряда, на который мы умножаем. Далее надо всё это сложить и получится ответ. Посмотрите примеры:

Значащие и незначащие нули

Рассмотрим число 10 (десять): если мы напишем 010, это по прежнему будет 10, можно написать 0000010 и это по прежнему будет 10 и т.д. Ноль перед единицей означает, что этот разряд равен нулю т. е этот ноль незначащий. В обычной записи, когда мы пишем в тетради, мы этот ноль не пишем, то есть указываем разряды которые есть, а незначащие нули впереди числа не пишем. Значащие нули обозначают разряды, которые есть, но равны нулю. Например, в числе 100(сто) они стоят после единицы. Если мы уберем один из этих нулей, то станет десять, это уже другое число. А вот если мы припишем ноль спереди, то будет 0100, это то же самое.

Метод триад и тетрад

Существует способ для быстрого перевода из двоичной системы в восьмеричную и шестнадцатеричную. Для перевода из двоичной в восьмеричную: число справа налево делится на группы по три цифры (их называют ТРИады), если в последней группе не хватает цифр, то впереди числа приписывают незначащие нули, чтобы заполнить группу. Затем каждая

триада переводится в восьмеричную систему. Если же надо перевести в шестнадцатеричную систему, то группы делают не по три, а по четыре цифры (их называют ТЕТРады). Важно знать, что перевод работает и в обратную сторону, восьмеричное или шестнадцатеричное число делится мысленно на цифры и каждую цифру потом переводим в триаду, для восьмеричной, или в тетраду, если переводим из шестнадцатеричной. Посмотрите на вторую таблицу для тетрад и триад и на приведенные ниже примеры. Эту таблицу можно просто заучить, но намного лучше, если вы научитесь считать в разных системах счисления и самостоятельно делать такую табличку. Да и если выполнить десяток упражнений на перевод этим методом, вы легко его освоите.

Табл. 2

2-ичная	8-ичная	2-ичная	16-ичная
(триады)		(тетрады)	
000	0	0000	0
001	1	0001	1
010	2	0010	2
011	3	0011	3
100	4	0100	4
101	5	0101	5
110	6	0110	6
111	7	0111	7
		1000	8
		1001	9
		1010	A
		1011	В
		1100	С
		1101	D
		1110	Е
		1111	F

1) Перевести число 110111111_2 в восьмеричную СС.

- Разбиваем двоичное число справа налево на группы из трёх бит (триады) 11 011 111.
- В самой левой группе меньше трёх бит, дописываем слева один незначащий ноль 011 011 111
- Каждую триаду заменяем восьмеричной цифрой: 3 3 7

Ответ: $110111111_2 = 337_8$

- 2) Перевести число 100010001002 в шестнадцатеричную СС.
- Разбиваем двоичное число справа налево на группы из четырёх бит (тетрады) 100 0100 0100.
- В самой левой группе меньше четырёх бит, дописываем слева один незначащий ноль 0100 0100 0100
- Каждую тетраду заменяем шестнадцатеричной цифрой: 4 4 4
 Ответ: 10001000100₂ = 444₁₆

Как производятся арифметические операции в позиционных системах счисления?

Рассмотрим основные арифметические операции: **сложение, вычитание, умножение и деление.** Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

В двоичной системе счисления арифметические операции выполняются по тем же правилам, что и в десятичной системе счисления, т.к. они обе являются позиционными (наряду с восьмеричной, шестнадцатеричной и др.).

Сложение

Сложение одноразрядных двоичных чисел выполняется по следующим правилам:

0 + 0 = 0 1 + 0 = 1 0 + 1 = 11 + 1 = 10

В последнем случае, при сложении двух единиц, происходит переполнение младшего разряда, и единица переносится в старший разряд. Переполнение возникает в случае, если сумма равна основанию системы счисления (в данном случае это число 2) или больше его (для двоичной системы счисления это не актуально).

Сложим для примера два любых двоичных числа:

 $1101 \\ + 101 \\ \hline 10010$

Вычитание

Вычитание одноразрядных двоичных чисел выполняется по следующим правилам:

0 - 0 = 0 1 - 0 = 10 - 1 = (заем из старшего разряда) 1

$$1 - 1 = 0$$

Пример:
 1110
 $\frac{101}{1001}$

Умножение

Умножение одноразрядных двоичных чисел выполняется по следующим правилам:

$$0*0=0$$
 $1*0=0$
 $0*1=0$
 $1*1=1$
Пример:
 1110
 $\frac{*10}{1110}$

Деление

Деление выполняется так же как в десятичной системе счисления:

Разбор заданий

- I. Сколько единиц в двоичной записи восьмеричного числа 1731₈? Для решения этого задания надо вспомнить метод триад (триад, потому что из восьмеричной в двоичную).
- 1) $1731_8 = 1731_8 = 0011111011001_2$
- 2) в этом числе 7 единиц

Ответ: 7.

- II. Укажите наименьшее четырёхзначное восьмеричное число, двоичная запись которого содержит 5 единиц. В ответе запишите только само восьмеричное число, основание системы счисления указывать не нужно.
- 1) минимальное двоичное число, содержащее 5 единиц это 11111₂, но в восьмеричной системе оно записывается как 37 двухзначное число

2) минимальное четырёхзначное восьмеричное число это $1000_8 = 1~000~000~000_2$, для решения задачи в конце этого числа нужно заменить четыре нуля на единицы:

 $1\ 000\ 001\ 111_2 = 1017_8$

Ответ: 1017₈

- III. Сколько единиц в двоичной записи десятичного числа 519₁₀?
- 1) Переводим число в двоичную систему. 1000000111_2
- 2) В этой записи 4 единицы.

Ответ: 4

IV. Даны 4 числа, они записаны с использованием различных систем счисления. Укажите среди этих чисел то, в двоичной записи которого содержится ровно 6 единиц. Если таких чисел несколько, укажите наибольшее из них.

1. 63_{10} * 4_{10} 2. $F8_{16}$ + 1_{10} 3. 333_8 4. 11100111_2

1) нужно перевести все заданные числа в двоичную систему, подсчитать число единиц и выбрать наибольшее из чисел, в которых ровно 6 единиц;

первый вариант вначале перемножим, а затем переведем в двоичную. 11111100_2 то есть в этом числе 6 единиц.

для **второго** варианта воспользуемся связью между шестнадцатеричной и двоичной системами счисления: каждую цифру шестнадцатеричного числа можно переводить отдельно в тетраду (4 двоичные цифры):

 $F8_{16} = 1111 \ 1000_2$

после добавления единицы $F8_{16} + 1 = 1111 \ 1001_2$ также получаем число, содержащее ровно 6 единиц, но оно меньше, чем число в первом варианте ответа

для **третьего** варианта используем связь между восьмеричной и двоичной системами: каждую цифру восьмеричного числа переводим отдельно в триаду (группу из трёх двоичных цифр):

 $333_8 = 011 \ 011 \ 011 \ _2 = 11011011_2$ это число тоже содержит 6 единиц, но меньше, чем число в первом варианте ответа

последнее число 111001112 уже записано в двоичной системе, оно тоже содержит ровно 6 единиц, но меньше первого числа

Таким образом, все 4 числа, указанные в вариантах ответов содержат ровно 6 единиц, но наибольшее из них – первое

Ответ: 1.

V. Дано $a=D7_{16}$ и $b=331_8$. Какое из чисел c, записанных в двоичной системе счисления, удовлетворяет неравенству a < c < b?

- 1.11011001_2 2.11011100_2 3.11010111(2) 4.11011000(2)
- 1) перевести все числа (и исходные данные, и ответы) в одну (любую!) систему счисления и сравнить.

Решим через десятичную, для примера.

2)
$$a=D7_{16}=13*16+7=215_{10}$$

3)
$$b=331_8=3*8^2+3*8+1=217_{10}$$

4) переводим в десятичную систему все ответы:

$$11011001_2 = 217$$
, $11011100_2 = 220$, $11010111_2 = 215$, $11011000_2 = 216_{10}$

5) между числами 215 и 217 может быть только 216

Ответ: 4.

VI. Для хранения целого числа со знаком используется один байт. Сколько единиц содержит внутреннее представление числа (-78)?

Решение:

1) переводим число 78 в двоичную систему счисления:

$$78_{10} = 64 + 8 + 4 + 2 = 26 + 23 + 22 + 21 = 1001110_2$$

- 2) по условию число занимает в памяти 1 байт = 8 бит, поэтому нужно представить число с помощью 8 разрядов
- 3) чтобы получилось всего 8 разрядов (бит), добавляем впереди один ноль:

 $78 = 01001110_2$

4) делаем инверсию битов (заменяем везде 0 на 1 и 1 на 0):

 $01001110_2 \rightarrow 10110001_2$

5) добавляем к результату единицу

 $10110001_2 + 1 = 10110010_2$

это и есть число (-78) в двоичном дополнительно коде

6) в записи этого числа 4 единицы

Ответ: 2.

Задания для тренировки

1. Ско	Сколько значащих нулей в двоичной записи десятичного числа 222?							
2. Как	Как представлено число 263 в восьмеричной системе счисления?							
1) 3	301 ₈	2) 650 ₈	3) 407 ₈	4) 777 ₈				
3. Как	Как записывается число A87 ₁₆ в восьмеричной системе счисления?							
1) 4	135 ₈	2) 1577 ₈	3) 5207 ₈	4) 6400 ₈				
4. Для	хранения це	пого числа	со знаком испо	льзуется один ба	айт. Сколько			
единиц содержит внутреннее представление числа (-128)?								
5. Дан	Б. Дано: $a = 9D_{16}$, $b = 237_8$. Какое из чисел C, записанных в двоичной							
сис	системе счисления, удовлетворяет неравенству $a < C < b$?							
1) 10011010_2 2) 100111110_2 3) 100111111_2 4) 110111110_2								
6. Вычислите: $10101010_2 - 252_8 + 17_{16}$. Ответ запишите в десятичной								
системе счисления.								
7. Даны числа: 2, 4, 6 и 8. Укажите среди них число, двоичная запись ко-								
торого содержит наибольшее количество значащих нулей.								
8. Укажите наибольшее четырёхзначное восьмеричное число, двоичная								
запись которого содержит ровно 4 нуля. В ответе запишите только само								
восьмерич	ное число, о	снование си	стемы счислен	ия указывать не	нужно.			
9. Дан	ы 4 числа,	они записа	аны с использ	вованием различ	ных систем			
счисления. Укажите среди этих чисел то, в двоичной записи которого								
содержится ровно 5 единиц. Если таких чисел несколько, укажите								
наибольшее из них.								
1) 15 ₁₀	2) 77	(8) 34	5_8 4)	FA_{16}				
10. Дано: $a = EA_{16}$, $b = 354_8$. Какое из чисел C, записанных в двоичной								
системе счисления, удовлетворяет неравенству $a < C < b$?								
1) 111010	10 ₂ 2)	11101110 ₂	3) 11101	100 ₂ 4) 111	010112			

Ответы к заданиям для тренировки

- 1. 2
- 2. 3) 407₈
- 3. 3) 5207₈
- 4. 1
- 5. 2) 10011110₂
- 6. 23₁₀
- 7. 6
- 8. 7400
- 9. 3) 345₈
- 10. 4) 11101011₂