Tema 11 Логарифмические уравнения и неравенства

§1. Понятие логарифма

Пусть дано уравнение $a^x = b$, где a > 0, b > 0 и $a \ne 1$.

Логарифмом числа b по основанию а называется показатель степени c, в которую надо возвести данное основание a, чтобы получить число b. Запись $\log_a b = c$ читается так: логарифм числа b по основанию a равен c.

Из равенства $2^5=32$ следует, что $\log_2 32=5$; из равенства $10^2=100$ следует, что $\log_{10} 100=2$; из равенства $\left(\frac{1}{2}\right)^{-3}=8$ следует, что $\log_{\frac{1}{2}} 8=-3$.

Из определения логарифма следует так называемое *основное логарифмическое тождество*

$$a^{\log_a b} = b$$
.

Например,
$$2^{\log_2 32} = 32$$
; $10^{\log_{10} 100} = 100$; $\left(\frac{1}{2}\right)^{\log_{\frac{1}{2}} 8} = 8$.

Основные свойства логарифма.

Пусть a > 0, $a \ne 1$, b > 0, c > 0, d > 0, $\alpha \in \mathbf{R}$, $\beta \in \mathbf{R}$.

- **1.** $\log_a 1 = 0$ (логарифм единицы равен нулю);
- **2.** $\log_a a = 1$ (логарифм основания равен единице);
- **3.** $a^{\log_a b} = b$ (основное логарифмическое тождество);
- **4**. $\log_a(b \cdot c) = \log_a b + \log_a c$ (логарифм произведения положительных чисел равен сумме логарифмов этих чисел при том же основании);

Замечание. В общем случае приведённое выше правило формулируется так: логарифм произведения нескольких чисел, если оно положительно, равен сумме логарифмов модулей этих чисел, взятых по тому же основанию, то есть

$$\log_a(b_1 \cdot b_2 \cdot \dots \cdot b_n) = \log_a|b_1| + \log_a|b_2| + \dots + \log_a|b_n|, \ b_1 \cdot b_2 \cdot \dots \cdot b_n > 0.$$

5. $\log_a \frac{b}{c} = \log_a b - \log_a c$ (логарифм частного положительных чисел равен разности логарифмов этих чисел при том же основании);

Замечание. Логарифм частного двух чисел, если оно положительно, равен разности логарифмов модулей делимого и делителя, взятых по тому же основанию, то есть

$$\log_a \frac{b}{c} = \log_a |b| - \log_a |c|, \ \frac{b}{c} > 0.$$

6. $\log_a b^{\alpha} = \alpha \log_a b$ (логарифм степени равен произведению логарифма основания этой степени на её показатель);

Замечание. Логарифм чётной степени числа, отличного от нуля, равен произведению показателя степени на логарифм модуля её основания, взятый по тому же основанию, то есть

$$\log_a b^{2n} = 2n\log_a |b|, \ n \in \mathbf{Z}.$$

7.
$$\log_{a^{\alpha}} b = \frac{1}{\alpha} \log_a b, \ \alpha \neq 0;$$

8.
$$\log_{a^{\alpha}} b^{\alpha} = \log_a b, \ \alpha \neq 0;$$

9.
$$\log_{a^{\alpha}} b^{\beta} = \frac{\beta}{\alpha} \log_a b$$
, $\alpha \neq 0$;

10.
$$\log_a b = \frac{\log_c b}{\log_c a}$$
, $c \ne 1$ (формула перехода к новому основанию);

11. $\log_a b = \frac{1}{\log_b a}$, $b \neq 1$ (частный случай формулы перехода к новому основанию);

12.
$$\log_a c \cdot \log_b d = \log_a d \cdot \log_b c$$
, $b \neq 1$;

13.
$$a^{\log_c b} = b^{\log_c a}$$
;

14. $\lg b$ — общепринятое написание выражения $\log_{10} b$ (десятичный логарифм); $\ln b$ — общепринятое написание выражения $\log_e b$ (натуральный логарифм), где число $e \approx 2,72$.

Нахождение логарифмов заданных чисел или выражений называется операцией *погарифмирования*. Нахождение числа b по заданному значению $\log_a b$ называется *потенцированием*.

Задача 1. Вычислите
$$\log_{\frac{1}{2}\sqrt{2}} \frac{1}{16}$$
.

Решение. Заметим, что $\frac{1}{16} = 2^{-4}$, $\frac{1}{2}\sqrt[5]{2} = 2^{-1+\frac{1}{5}} = 2^{-\frac{4}{5}}$. Тогда согласно свойству 7 имеем $\log_{\frac{1}{2}\sqrt[5]{2}} \frac{1}{16} = \log_{2^{-\frac{4}{5}}} 2^{-4} = \frac{-4}{-\frac{4}{5}} \log_{2} 2 = 5$.

Ответ: 5.

Задача 2. Вычислите $-\log_2\log_2\sqrt{\sqrt[4]{2}}$.

Решение.

$$-\log_2\log_2\sqrt{\sqrt[4]{2}} = -\log_2\log_22^{\frac{1}{8}} = -\log_2\frac{1}{8} = -\log_22^{-3} = -(-3) = 3.$$

Ответ: 3.

Задача 3. Вычислите $4^{\frac{1}{4}\log_2 3 + 2\log_{16} 4}$

Решение.
$$4^{\frac{1}{4}\log_2 3 + 2\log_{16} 4} = 2^{2\left(\frac{1}{4}\log_2 3 + 2\cdot\frac{1}{2}\right)} = 2^{\frac{1}{2}\log_2 3 + 2} = 2^{\log_2 \sqrt{3}} \cdot 2^2 = 4\sqrt{3}$$
. Ответ: $4\sqrt{3}$.

 $\frac{\frac{\lg \lg c}{\log a}}{a}$. Упростите выражение $a^{\frac{\lg \lg c}{\lg a}}$.

Pешение. Заметим, что $\log_a(\lg c) = \frac{\lg\lg c}{\lg a}$ (воспользовались формулой перехода к новому основанию), тогда $\frac{1^{\lg\lg c}}{a^{\lg a}} = a^{\log_a(\lg c)} = \lg c$. Oтвет: $\lg c$.

Задача 5. Известно, что $\log_7 2 = a$. Найдите $\log_{1/2} 28$.

Решение.

$$\log_{1/2} 28 = \frac{\log_7 28}{\log_7 1/2} = \frac{\log_7 (4 \cdot 7)}{\log_7 1 - \log_7 2} = \frac{\log_7 4 + \log_7 7}{0 - a} = \frac{2\log_7 2 + 1}{-a} = -\frac{2a + 1}{a}.$$

Ответ: $-\frac{2a+1}{a}$.

Задача 6. Известно, что $\lg 2 = a$, $\lg 13 = b$. Найдите $\log_5 3,38$. *Решение*.

$$\log_5 3.38 = \frac{\lg 3.38}{\lg 5} = \frac{\lg (338:100)}{\lg (10:2)} = \frac{\lg 338 - \lg 100}{\lg 10 - \lg 2} =$$

$$= \frac{\lg 338 - 2}{1 - a} = \frac{\lg (13^2 \cdot 2) - 2}{1 - a} = \frac{2\lg 13 + \lg 2 - 2}{1 - a} = \frac{2b + a - 2}{1 - a}.$$

Omeem: $\frac{2b+a-2}{1-a}$.

Задача 7. Вычислите $100^{\frac{1}{2} - \lg \sqrt[4]{4}}$.

Решение. Положим $x = 100^{\frac{1}{2} - \lg \sqrt[4]{4}}$ и прологарифмируем полученное равенство по основанию 10:

$$\lg x = \lg \left(100^{\frac{1}{2} - \lg \sqrt[4]{4}} \right) \Rightarrow$$

$$\Rightarrow \lg x = \left(\frac{1}{2} - \lg \sqrt[4]{4} \right) \cdot \lg 100 = \left(\frac{1}{2} - \lg \sqrt[4]{4} \right) \cdot 2 = 1 - 2\lg 2^{\frac{1}{2}} = \lg 10 - \lg 2 = \lg 5 \Rightarrow$$

$$\Rightarrow x = 5.$$

Ответ: 5.

§2. Свойства и график логарифмической функции

Функция вида $y = \log_a x$, где a — положительное число, не равное единице, называется *погарифмической* (таким образом, логарифмическая функция является обратной к показательной функции).

Перечислим основные свойства этой функции.

- 1) Функция задана на интервале $(0;+\infty)$ (график расположен справа от оси Oy).
- 2) При любом положительном основании $\log_a 1 = 0$. Следовательно, график логарифмической функции пересекает ось абсцисс в точке (1;0) при любом a > 0, $a \ne 1$.
- 3) Функция является возрастающей при a>1 и убывающей при 0< a<1. Причём, если a>1, то $\log_a x<0$ при 0< x<1 и $\log_a x>0$ при x>1; если 0< a<1, то $\log_a x>0$ при 0< x<1 и $\log_a x<0$ при x>1.
- 4) Непрерывна на всей области определения $(0;+\infty)$.

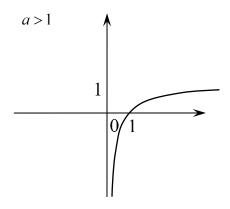
5) Множеством значений функции $y = \log_a x$ является интервал $(-\infty; +\infty)$, то есть логарифмическая функция принимает все действительные значения.

Построим график логарифмической функции при частных значениях основания a.

а. Пусть a=2 и значит a>1. Составим таблицу значений функции $y=\log_2 x$.

х	1/8	1/4	1/2	1	2	4	8
у	-3	-2	-1	0	1	2	3

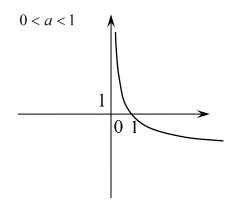
На основании этой таблицы построим график функции $y = \log_2 x$.



b. Пусть $a=\frac{1}{2}$ и значит 0 < a < 1. Составим таблицу значений функции $y = \log_{1/2} x$.

X	8	4	2	1	1/2	1/4	1/8
у	-3	-2	-1	0	1	2	3

На основании таблицы построим график функции $y = \log_{1/2} x$.



§3. Логарифмические уравнения

Погарифмическим уравнением называется уравнение, содержащее неизвестное только под знаком логарифма или в основании логарифма.

При решении логарифмических уравнений необходимо учитывать ОДЗ: под знаком логарифма могут стоять только положительные величины, в основании логарифма — только положительные величины, отличные от единицы.

Найдём решения простейших логарифмических уравнений:

$$\log_a x = b \implies x = a^b;$$
$$\log_x c = d \implies x = c^{\frac{1}{d}},$$

где x — неизвестное, а a, b, c, d — заданные действительные числа.

При решении логарифмических уравнений используются свойства логарифмической функции. Если в процессе решения выполняются некоторые преобразования, необходимо следить за их равносильностью, так как при логарифмировании (или потенцировании) выражений происходит сужение (или расширение) ОДЗ.

Задача 8. Решите уравнение $\lg(x+1,5) = -\lg x$.

Решение. ОДЗ:
$$\begin{cases} x+1,5>0, \\ x>0 \end{cases} \Rightarrow x>0.$$

$$\lg(x+1,5) + \lg x = 0 \Rightarrow \lg(x(x+1,5)) = \lg 1 \Rightarrow x(x+1,5) = 1 \Rightarrow x^2 + 1,5x - 1 = 0 \Rightarrow$$

 $\Rightarrow x_1 = -2 \notin \text{ОД3}; \quad x_2 = \frac{1}{2} \in \text{ОД3}.$

Oтвет: $\frac{1}{2}$.

Задача 9. Решите уравнение $\log_x \frac{1}{16} = 4$.

Решение. ОДЗ:
$$\begin{cases} x > 0, \\ x \neq 1 \end{cases}$$
.

Согласно определению логарифма $x^4 = \frac{1}{16}$. Тогда $|x| = \frac{1}{2}$, и

$$x_1 = -\frac{1}{2} \notin \text{ОД3}; \quad x_2 = \frac{1}{2} \in \text{ОД3}.$$

Oтвет: $\frac{1}{2}$.

Задача 10. Решите уравнение $\log_7 \log_3 \log_2 x = 0$.

Решение. ОДЗ:
$$\begin{cases} x > 0, \\ \log_2 x > 0, \\ \log_3 \log_2 x > 0. \end{cases}$$
$$\log_7 \log_3 \log_2 x = \log_7 1 \Rightarrow \log_3 \log_2 x = 1 \Rightarrow$$
$$\Rightarrow \log_3 \log_2 x = \log_3 3 \Rightarrow \log_2 x = 3 \Rightarrow x = 8 \in \text{ОДЗ}.$$

Ответ: 8.

Задача 11. Решите уравнение $\log_2^2 x - 5\log_2 x + 6 = 0$.

Решение. ОД3: x > 0.

Введём переменную $t = \log_2 x$, получим квадратное уравнение $t^2 - 5t + 6 = 0 \Rightarrow t_1 = 2$, $t_2 = 3 \Rightarrow \log_2 x = 2$, $\log_2 x = 3 \Rightarrow x_1 = 4$, $x_2 = 8 \in \text{ОД3}$. *Ответ*: 4; 8.

Задача 12. Решите уравнение $\log_2 \sqrt{x-1} + 3\log_2 \sqrt{x+1} = \log_2 \sqrt{x^2-1}$.

Решение. ОДЗ:
$$\begin{cases} \sqrt{x-1} > 0, \\ \sqrt{x+1} > 0, \Rightarrow \begin{cases} x > 1, \\ x > -1, \\ x < -1, x > 1 \end{cases} \Rightarrow x > 1. \end{cases}$$
$$\log_2(x-1)^{\frac{1}{2}} + 3\log_2(x+1)^{\frac{1}{2}} = \log_2(x^2-1)^{\frac{1}{2}} \Rightarrow \Rightarrow \frac{1}{2}\log_2(x-1) + \frac{1}{2}\log_2(x+1)^3 = \frac{1}{2}\log_2(x^2-1) \Rightarrow \Rightarrow \log_2(x-1) + \log_2(x+1)^3 = \log_2(x^2-1) \Rightarrow \Rightarrow \log_2(x-1) + \log_2(x+1)^3 = \log_2(x^2-1) \Rightarrow (x-1)(x+1)^3 = x^2-1 \Rightarrow \Rightarrow (x-1)(x+1)^3 - (x^2-1) = 0 \Rightarrow (x^2-1)(x+1)^2 - 1 = 0 \Rightarrow \Rightarrow (x-1)(x+1)x(x+2) = 0 \Rightarrow x = \pm 1, x = 0, x = -2. \end{cases}$$

Найденные значения неизвестной не принадлежат ОДЗ, следовательно, уравнение не имеет действительных решений.

Ответ: нет действительных решений.

Задача 13. Решите уравнение $\log_2(9^{x-1}+7)=2+\log_2(3^{x-1}+1)$. *Решение*. ОДЗ: $x \in \mathbf{R}$.

Введём переменную $t = 3^{x-1}$, t > 0 получим

$$\log_2(t^2 + 7) = 2 + \log_2(t + 1) \Rightarrow \log_2(t^2 + 7) = \log_2(4(t + 1)) \Rightarrow$$

$$\Rightarrow t^2 + 7 = 4(t + 1) \Rightarrow t^2 - 4t + 3 = 0 \Rightarrow t_1 = 1, t_2 = 3.$$

Делаем обратную замену

1) $3^{x-1} = 1$, x-1=0, x=1;

2)
$$3^{x-1} = 3$$
, $x-1=1$, $x=2$.

Ответ: 1; 2.

Задача 14. Решите уравнение $9^{\log_3(1-2x)} = 5x^2 - 5$.

 $Peшение. \, \text{ОД3: } 1-2x>0 \Rightarrow x<\frac{1}{2}.$

$$3^{2\log_3(1-2x)} = 5x^2 - 5 \Rightarrow 3^{\log_3(1-2x)^2} = 5x^2 - 5 \Rightarrow (1-2x)^2 = 5x^2 - 5 \Rightarrow$$
$$\Rightarrow x^2 + 4x - 6 = 0 \Rightarrow x_{1,2} = -2 \pm \sqrt{10}.$$

С учетом ОДЗ получаем

Ответ: $-2 - \sqrt{10}$.

Задача 15. Решите уравнение $x^{\lg x} = 1000x^2$.

Решение. ОД3: x > 0.

Логарифмируя по десятичному основанию обе части уравнения, получим

$$\lg^2 x = \lg 1000 + \lg x^2 \implies \lg^2 x = \lg 1000 + 2\lg|x|.$$

Учитывая ОДЗ, перепишем

$$\lg^2 x - 2 \lg x - 3 = 0 \implies \lg x = -1$$
, $\lg x = 3 \implies x_1 = 0,1$, $x_2 = 1000$.

Ответ: 0,1;1000.

Задача 16. Решите уравнение $x^{\log_2\left(\frac{x}{98}\right)} \cdot 14^{\log_2 7} = 1$.

Решение. ОДЗ: x > 0.

$$x^{\log_2 x - \log_2 2 - 2\log_2 7} \cdot 2^{\log_2 7} \cdot 7^{\log_2 7} = 1 \Longrightarrow x^{\log_2 x - 1 - 2\log_2 7} \cdot 7^{\log_2 7 + 1} = 1.$$

Логарифмируя последнее уравнение по основанию 2, получим

$$(\log_2 x - 1 - 2\log_2 7)\log_2 x + (\log_2 7 + 1)\log_2 7 = 0.$$

Полагая $t = \log_2 x$, получим квадратное уравнение

$$t^2 - (2\log_2 7 + 1) \cdot t + \log_2^2 7 + \log_2 7 = 0 \Rightarrow t_1 = \log_2 7, t_1 = \log_2 7 + 1 \Rightarrow$$

 $\Rightarrow \log_2 x = \log_2 7, \log_2 x = \log_2 7 + 1 \Rightarrow x_1 = 7, x_2 = 14.$

Ответ: 7; 14.

Задача 17. Решите уравнение

$$\log_{3x+7}(9+12x+4x^2) + \log_{2x+3}(6x^2+23x+21) = 4.$$

Решение.

ОДЗ:
$$\begin{cases} 4x^2 + 12x + 9 > 0, \\ 3x + 7 > 0, \\ 3x + 7 \neq 1, \\ 6x^2 + 23x + 21 > 0, \\ 2x + 3 > 0, \\ 2x + 3 \neq 1 \end{cases} \Rightarrow \begin{cases} (2x + 3)^2 > 0, \\ 3x + 7 > 0, \\ x \neq -2, \\ (2x + 3)(3x + 7) > 0, \end{cases} \Rightarrow \begin{cases} 3x + 7 > 0, \\ 2x + 3 > 0, \\ x \neq -1 \end{cases}$$
$$\Rightarrow x \in \left(-\frac{3}{2}; -1\right) \cup (-1; +\infty).$$

Учитывая ОДЗ, перепишем уравнение:

$$\log_{3x+7}(2x+3)^2 + \log_{2x+3}((2x+3)(3x+7)) = 4 \Rightarrow$$

$$\Rightarrow 2\log_{3x+7}(2x+3) + \log_{2x+3}(3x+7) + 1 = 4 \Rightarrow$$

$$\Rightarrow 2\log_{3x+7}(2x+3) + \log_{2x+3}(3x+7) - 3 = 0.$$

Полагая $t = \log_{3x+7}(2x+3)$, получим

$$2t + \frac{1}{t} - 3 = 0 \Rightarrow 2t^2 - 3t + 1 = 0 \Rightarrow t_1 = \frac{1}{2}, \ t_2 = 1.$$

Делаем обратную замену:

1)
$$t_1 = \frac{1}{2} \Rightarrow \log_{3x+7}(2x+3) = \frac{1}{2} \Rightarrow \sqrt{3x+7} = 2x+3 \Rightarrow 3x+7 = (2x+3)^2 \Rightarrow x_1 = -\frac{1}{4} \in \text{ОД3}, \ x_2 = -2 \notin \text{ОД3}.$$

2)
$$t_2 = 1 \Rightarrow \log_{3x+7}(2x+3) = 1 \Rightarrow 2x+3 = 3x+7 \Rightarrow x = -4 \notin \text{ОД3}.$$

Ответ: $-\frac{1}{4}$.

§4. Логарифмические неравенства

Простейшими логарифмическими неравенствами являются неравенства следующего вида

$$\log_a x > b$$
, $\log_a x < b$, $\log_a x \ge b$, $\log_a x \le b$,

где a и b – заданные действительные числа, причём a > 0, $a \ne 1$.

Решение логарифмического неравенства начинается с нахождения области допустимых значений неизвестного, а затем применяются те же приёмы, что и при решении логарифмических уравнений. Кроме того, при

решении логарифмического неравенства всегда используется свойство монотонности логарифмической функции (если $\log_a x_1 > \log_a x_2$, то $x_1 > x_2$ при a > 1, и $x_1 < x_2$ при 0 < a < 1). Так, например,

$$\log_a x > b \iff x > a^b$$
 при $a > 1$, $\log_a x < b \iff 0 < x < a^b$ при $0 < a < 1$.

Задача 18. Решите неравенство $\log_2(x^2 - 4x + 3) < 3$.

Решение. ОДЗ:
$$x^2 - 4x + 3 > 0 \Rightarrow (x - 1)(x - 3) > 0 \Rightarrow x \in (-\infty;1) \cup (3;+\infty)$$
.

Из неравенства $\log_2(x^2 - 4x + 3) < 3 \Rightarrow \log_2(x^2 - 4x + 3) < \log_2 8 \Rightarrow x^2 - 4x + 3 < 8 \Rightarrow x^2 - 4x - 5 < 0 \Rightarrow (x+1)(x-5) < 0 \Rightarrow x \in (-1; 5).$

Учитывая ОДЗ, получаем следующую систему:

$$\begin{cases} x \in (-\infty;1) \cup (3;+\infty), \\ x \in (-1;5) \end{cases} \Rightarrow x \in (-1;1) \cup (3;5).$$

Ombem: $x \in (-1;1) \cup (3;5)$

Задача 19. Решите неравенство $\log_6(x-3\sqrt{x+1}+3)<1$.

Решение. ОДЗ:

$$\begin{cases} x - 3\sqrt{x+1} + 3 > 0, \\ x + 1 \ge 0 \end{cases} \Rightarrow \begin{cases} 3\sqrt{x+1} < x+3, \\ x \ge -1 \end{cases} \Rightarrow \begin{cases} x + 3 \ge 0, \\ 9(x+1) < (x+3)^2, \Rightarrow \\ x \ge -1 \end{cases}$$
$$\Rightarrow \begin{cases} x^2 - 3x > 0, \\ x \ge -1 \end{cases} \Rightarrow \begin{cases} x < 0, x > 3, \\ x \ge -1 \end{cases} \Rightarrow -1 \le x < 0, x > 3.$$

Теперь рассмотрим само неравенство $\log_6(x-3\sqrt{x+1}+3)<\log_66$. Помня, что основание логарифма больше 1, потенцируем это неравенство. Получим

$$x-3\sqrt{x+1}+3<6 \Rightarrow 3\sqrt{x+1}>x-3 \Rightarrow \begin{bmatrix} x-3<0, \\ x+1\geq 0; \\ x-3\geq 0, \\ 9(x+1)>(x-3)^2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -1\leq x<3; \\ x\geq 3, \\ x^2-15x<0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1\leq x<3; \\ x\geq 3, \\ 0< x<15 \end{bmatrix} \Rightarrow \begin{bmatrix} -1\leq x<3; \\ 3\leq x<15 \end{bmatrix} \Rightarrow -1\leq x<15.$$

Учитывая ОДЗ, запишем

$$\begin{cases} -1 \le x < 0, \ x > 3, \\ -1 \le x < 15 \end{cases} \Rightarrow -1 \le x < 0, \quad 3 < x < 15.$$

Ombem: $-1 \le x < 0$, 3 < x < 15.

Задача 20. Решите неравенство

$$\log_4(4^x - 1) \cdot \log_{16}(16^{x+1} - 8 \cdot 4^{x+1} + 16) > 12$$
.

Решение. Заметим, что

$$16^{x+1} - 8 \cdot 4^{x+1} + 16 = 16 \cdot 16^x - 32 \cdot 4^x + 16 = 16 \cdot \left(16^x - 2 \cdot 4^x + 1\right) = 16 \cdot \left(4^x - 1\right)^2.$$

Тогда ОДЗ:
$$\begin{cases} 4^x - 1 > 0, \\ 16 \cdot (4^x - 1)^2 > 0 \end{cases} \Rightarrow 4^x - 1 > 0.$$

Учитывая полученное выше равенство $16^{x+1} - 8 \cdot 4^{x+1} + 16 =$ $=16 \cdot (4^{x}-1)^{2}$, перепишем исходное неравенство

$$\log_{4}(4^{x} - 1) \cdot \left(\log_{16} 16 + \log_{16}(4^{x} - 1)^{2}\right) > 12,$$

$$\log_{4}(4^{x} - 1) \cdot \left(1 + \log_{4^{2}}(4^{x} - 1)^{2}\right) > 12,$$

$$\log_{4}(4^{x} - 1) \cdot \left(1 + \log_{4}\left|4^{x} - 1\right|\right) > 12.$$

Последнее неравенство в ОДЗ равносильно следующему неравенству

$$\log_4(4^x - 1) \cdot (1 + \log_4(4^x - 1)) > 12$$
.

Пусть $t = \log_4(4^x - 1)$, тогда это неравенство примет вид

$$t(1+t)>12 \Rightarrow t^2+t-12>0 \Rightarrow (t+4)(t-3)>0 \Rightarrow t<-4, t>3.$$

Таким образом, в силу возрастания функции $y = \log_4 x$ имеем

$$\log_4(4^x - 1) < -4$$
, $\log_4(4^x - 1) > 3 \Rightarrow 4^x - 1 < \frac{1}{256}$, $4^x - 1 > 64$.

Учитывая ОДЗ и возрастание функции $y = 4^x$, запишем

$$0 < 4^x - 1 < \frac{1}{256}, 4^x - 1 > 64 \Rightarrow 1 < 4^x < \frac{257}{256}, 4^x > 65 \Rightarrow$$

$$\Rightarrow 0 < x < \log_4 \frac{257}{256}, x > \log_4 65 \Rightarrow 0 < x < \log_4 257 - 4, x > \log_4 65.$$

Omeem: $0 < x < \log_4 257 - 4$, $x > \log_4 65$.

Задача 21. Решите неравенство $\log_{\frac{1}{2}} \log_2(x-1) \ge 0$.

Решение. ОДЗ:
$$\begin{cases} x-1>0, \\ \log_2(x-1)>0 \end{cases} \Rightarrow \begin{cases} x>1, \\ x-1>1 \end{cases} \Rightarrow x>2.$$
 Далее,
$$\log_{\frac{1}{2}}\log_2(x-1) \ge \log_{\frac{1}{2}}1 \Rightarrow \left(\text{так как } \frac{1}{2}<1\right) \Rightarrow \log_2(x-1) \le 1 \Rightarrow \log_2(x-1) \le \log_2 2 \Rightarrow \left(\text{так как } 2>1\right) \Rightarrow x-1 \le 2 \Rightarrow x \le 3.$$

С учётом ОДЗ: $2 < x \le 3$.

Ответ: $x \in (2; 3]$.

Задача 22. Решите неравенство $\log_{x-1}(x+1) > \log_{x^2-1}(x+1)$.

Решение. ОДЗ:
$$\begin{cases} x-1>0, \\ x-1\neq 1, \\ x^2-1>0, \implies x\in (1;\sqrt{2})\cup (\sqrt{2};2)\cup (2;+\infty). \\ x^2-1\neq 1, \\ x+1>0 \end{cases}$$

Переходя к логарифмам по основанию x+1, получим

$$\frac{1}{\log_{x+1}(x-1)} > \frac{1}{\log_{x+1}(x^2-1)} \Rightarrow \frac{1}{\log_{x+1}(x-1)} - \frac{1}{\log_{x+1}(x^2-1)} > 0 \Rightarrow .$$

$$\Rightarrow \frac{\log_{x+1} \frac{x^2-1}{x-1}}{\log_{x+1}(x-1) \cdot \log_{x+1}(x^2-1)} > 0 \Rightarrow \frac{1}{\log_{x+1}(x-1) \cdot \log_{x+1}(x^2-1)} > 0 \Rightarrow$$

$$\Rightarrow \log_{x+1}(x-1) \cdot \log_{x+1}(x^2-1) > 0 \Rightarrow \log_{x+1}(x-1) \left(\log_{x+1}(x-1) + 1\right) > 0 \Rightarrow$$

$$\Rightarrow \log_{x+1}(x-1) < -1, \ \log_{x+1}(x-1) > 0 \Rightarrow \log_{x+1}(x^2-1) < 0, \ \log_{x+1}(x-1) > 0 \Rightarrow \\ \Rightarrow \log_{x+1}(x^2-1) < \log_{x+1}1, \ \log_{x+1}(x-1) > \log_{x+1}1.$$

Так как для всех x из ОДЗ выполняется неравенство x+1>1, то последние два неравенства переписываются следующим образом

$$x^2 - 1 < 1, x - 1 > 1 \Rightarrow -\sqrt{2} < x < \sqrt{2}, x > 2.$$

Учитывая ОДЗ, получим

Ombem: $x \in (1; \sqrt{2}) \cup (2; +\infty)$.

Задачи для самостоятельного решения

Задание 1. Найдите значения выражений:

1.
$$\sqrt{10^{2+\frac{1}{2}lg16}}$$

2.
$$\log_{\sqrt{2}} 9$$
, $\log_{64} \sqrt{3}$, $\log_2 81$, если $\log_4 3 = a$;

3. $\log_{\sqrt{3}} \sqrt[6]{a}$, если $\log_a 27 = b$.

Задание 2. Решите уравнения:

1.
$$\log_{\frac{1}{2}} \sqrt[3]{2x-2} = -2$$
;

2.
$$\log_{\frac{3}{5}} \frac{2x+3}{x-2} = 1$$
;

3.
$$100 \cdot x^{2\lg x} = x^4$$
;

4.
$$\log_{0.7} \sqrt{\frac{2x+3}{x-1}} = 0$$
;

5.
$$\log_{\frac{1}{\sqrt{2}}} \sqrt{3-2x} = -1$$
;

6.
$$\log_{\frac{6-x}{2x}} 2 + 1 = 0$$
;

7.
$$\lg \sqrt{x} = \frac{1}{2} \lg \sqrt[3]{2x^2 + 3x}$$
;

8.
$$\log_{\frac{64}{7+x}} 8 - \frac{1}{2} = 0$$
;

9.
$$\log_{\frac{2x-1}{x^2}} 3 - 1 = 0$$
;

21.2 lg
$$\left(\sqrt{x + \frac{x}{24}} + \sqrt{\frac{x}{24}}\right) - 1 = \text{lg } 1,5;$$

22.
$$\lg \sqrt{5x-4} - 2 = \lg 0.18 - \lg \sqrt{x+1}$$
;

$$23.4^{\log_3 x} + x^{\log_3 4} = 4 - 5^{\frac{1}{3}\log_5 8};$$

24.
$$\log_8(\log_3(1 + \log_2(6 - x)^2)^2) = \frac{1}{3}$$
;

25.
$$(1 + \log_5 3) \log_{15} x = \log_5 28 + \log_{\frac{1}{2}} (x - 3);$$

10.
$$\log_{\sqrt{6-x}} 3 - 2 = 0$$
;

$$11. x^{\frac{1}{2}\log_{\sqrt{x}}(x^2-x)} = 3^{\log_9 4};$$

12.
$$\lg(x^2 - 125) - \lg(x - 6) = 2$$
;

13.
$$\log_3 \sqrt{2x+1} = 1$$
;

14.
$$\sqrt{1 + \log_x \sqrt{27}} \cdot \log_3 x + 1 = 0$$
;

$$15. x^{\log_2\left(\frac{x}{98}\right)} \cdot 14^{\log_2 7} = 1;$$

16.
$$\sqrt{2\log_3(-x)} = \log_3 \sqrt{x^2}$$
;

17.
$$\lg \lg x = \lg \lg 64 - \lg 2$$
;

$$18.3^{\log_3^2 x} + x^{\log_3 x} = 162;$$

$$19.4^{\log_9 x^2} + 3^{\log_3 2} = 4^{\log_9 x + 1} - 4^{\log_9 x}$$
:

$$20. x^{\lg x} = 1000 x^2;$$

$$26.\log_{8}(2\log_{3}(1+\log_{2}(1+3\log_{2}x))) = \frac{1}{3}.$$

Задание 3. Решите неравенства:

1.
$$\log_5(3-8x) > 0$$
;

2.
$$\log_{\frac{1}{2}}(7-3x) \ge 0$$
;

3.
$$\log_{\frac{1}{3}}(7-x) > -2$$
;

4.
$$\log_{\frac{1}{5}}(3-2x) > -1$$
;

5.
$$\log_2(x-3) \le 3$$
;

6.
$$\lg(4x-1) \le 1$$
;

7.
$$\lg(x^2 + 2x + 2) < 1$$
;

13.
$$\log_{(x+1)^2} 8 + 3\log_4(x+1) \ge 9\frac{1}{4}$$
;

$$\log_{0,5}\log_{\frac{5-4x}{2}}(16x^2 - 25x + 10) > 0$$

_ ;

$$\log_2(x^2 - 3x) + \log_{\frac{1}{2}}(x + 3) < \log_{\frac{1}{2}}$$

8.
$$\log_3(3x-1) < \log_3(2x+3)$$
;

9.
$$\log_{\frac{1}{7}}(4x-3) \ge \log_{\frac{1}{7}}(x+3)$$
;

10.
$$\lg\left(\frac{3}{2}|x|-1\right) > \lg(x^2-2);$$

11.
$$\log_9^2 x \ge \log_3^2 \sqrt{1 - \frac{x}{4}}$$
;

12.
$$\log_x \log_2 \frac{3x-7}{3x-4} > 0$$
;

Ответы. 1.1. 20; 1.2. $8a; \frac{a}{6}; 8a;$ 1.3. $\frac{1}{h};$

2.1. 33; **2.2.** -3; **2.3.** 10; **2.4.** -4; **2.5.** $\frac{1}{2}$; **2.6.** 3; **2.7.** 3; **2.8.** -6;

2.9. -7; **2.10.** 3; **2.11.** 2; **3.12.** 95; **2.13.** 4; **2.14.** $\frac{1}{9}$; **2.15.**7,14; **2.16.**

-9; -1; **2.17.** $9; \frac{1}{9};$ **2.18.** 8; **2.19.** 0,1; 1000; **2.20.**

2.21. 8; **2.22.** 1; **2.23.** 4; 5,75; 6,25; 8; **2.24.** 7; **2.26.** 2; **3.1.** $\left(-\infty; \frac{1}{4}\right)$;

3.2. $\left[2;2\frac{1}{3}\right]$; **3.3.** $\left(-2;7\right)$; **3.4.** $\left(1;1,5\right)$; **3.5.** $\left(3;11\right]$; **3.6.** $\left(\frac{1}{4};\frac{11}{4}\right]$;

3.7. (-4;2); **3.8.** $\left(\frac{1}{3};4\right);$ **3.9.** $\left(\frac{3}{4};2\right];$ **3.10.** $\left(-2;-\sqrt{2}\right)\cup\left(\sqrt{2};2\right);$

3.11. $\left(0; \frac{4}{5}\right] \cup \{2\};$ **3.12.** $\left(0; \frac{1}{3}\right) \cup \left(1; \frac{4}{3}\right);$ **3.13.** $\left(0; \sqrt[6]{2} - 1\right] \cup \left[63; +\infty\right);$

3.14. $\left(\frac{1}{2}; \frac{9}{16}\right) \cup \left(\frac{15}{16}; 1\right);$

3.15. $(3-3\sqrt{2};0)\cup(3;3+\sqrt{2});$